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Abstract. In previous papers, we introduced the idea of a Virtual Sensor, which is a
mathematical model trained to learn the potentially nonlinear relationships between spectra
for a given image scene for the purpose of predicting values of a subset of those spectra when
only partial measurements have been taken. These nonlinear relationships are induced by
the physical characteristics of the image scene. In building a Virtual Sensor a key question
that arises is that of characterizing the stability of the model as the underlying scene changes.
For example, the spectral relationships could change for a given physical location, due to
seasonal weather conditions. This paper, based on a talk given at the American Geophysical
Union (2005), discusses the stability of predictoins through time and also demonstrates the
use of a Virtual Sensor in making multi-resolution predictions. In this scenario, a model is
trained to learn the nonlinear relationships between spectra at a low resolution in order to
predict the spectra at a high resolution.

1. Introduction

In recent years, we have been developing the idea of a Virtual Sensor, which is a machine
learning model that has learned the relationships between spectra for a given image scene.
Once these relationships are known, the model can be used to predict values of the spectra
using only a subset of the spectral measurements. This capability can prove to be very useful
for scientific and engineering studies [9, 10, 12].

We begin with a brief discussion of our approach to modeling remote sensing cubes from
Earth observing satellites such as MODIS (Moderate Resolution Imaging Spectroradiome-
ter). For purposes of the discussion presented here, we will model the observed data as a
time series of matrices following the notation in [5]. The spatiotemporal random function
Z(u, λ, t) is modeled as a finite number n of spatially correlated time series with the following
representation:

(1) Z(u, λ, t) = [Z(u1, λ, t), Z(u2, λ, t), ..., Z(un, λ, t)]T

In Equation 1, u represents the two-dimensional spatial coordinate, λ represents the
vector of measured wavelengths, and t represents time. The superscript T indicates the
transpose operator. If multiple wavelengths are measured, then each Zi is actually a matrix,
and the function Z(u, λ, t) represents a data cube of size (n× Λ× T ), where these symbols
represent the number of spatial locations, the total number of measured wavelengths, and the
total number of time samples, respectively. An image scene U measured at Λ wavelengths
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corresponds to one data cube; if the same scene is sampled at T time steps, we get T such
cubes.

In this notation, the spatial coordinate u represents the coordinates (or index) of a
measurement at a particular location in the field of view. Of course, this is not the only
method available to model such time series. It is possible to model these time series as a set
of temporally correlated spatial random functions, or as a deterministic or stochastic trend
model. Kryiakidis and Journel, 1999 [5] have a more complete discussion of these models,
along with their inter-relationships.

In building a Virtual Sensor, we estimate P (Z(b1, t)|Z(B2, t)) where b1 is the ’target’
wavelength band of the sensor of interest, and B2 is the set of all other measured wavelengths,
with b1 ∩B2 = ∅ and b1 ∪B2 being the entire set of wavelengths that are measured.

Although it is often possible to learn these relationships, the stability of the relationship
through time and the ability of the estimator to generate images at high resolution when
only the low resolution measurements becomes important. In this paper we examine these
two areas. All the studies presented in this paper are based on 18 images taken during the
year 2005 over Fresno CA. We chose this area because of the variability due to moisture and
sunlight that the region experiences over a year. It is admittedly an easier region compared
to deciduous forests where the degree of variation is expected to be much higher. Analysis
of those areas will be discussed in future papers.

2. Assessing the Stability of the Spectral Relationships through Time

For a given spatial region U and time coordinate t0, the spectral information can be
correlated. 1 This correlation is induced by physical characteristics of the image scene. If
those characteristics do not change significantly with time our model should be able to
estimate P (Z(b1, t)|Z(B2, t)) with low error. If, however, the physical characteristics change
significantly through time, the degree of correlation and more generally the interrelationships
between the spectral measurements would change.

The choice of model used to perform the estimation of P (Z(b1, t)|Z(B2, t)) can make
a difference in the overall prediction accuracy. For this study, we use two simple models,
the first being a linear model and the second is an ensemble of bagged feedforward neural
networks [?]. These models are widely available and are useful for benchmarking predictive
models. They span the spectrum of the bias-variance tradeoff due to model complexity.

Figure 1 shows the observed variation in the prediction accuracy for a Virtual Sensor
built with either one or three days worth of training data. The effects of seasonal variation
are highest for the linear model trained with only one day of data. The data taken on
9/26 shows a high degree of variation. Inspection of the data indicates that this is likely
due to a very low spectral reflectance in Channel 6 for that particular day, thus creating
a poor signal to noise ratio. The normalized error shown on this figure was computed as
e = 1

N

∑
i(|yi − ŷi|/yi) for N predictions.

3. Multi-Resolution Predictions

In the previous section we showed how predictive models can yield stable predictions
through time given the appropriate model and training data. In this section we show how
these models can be used to estimate the spectral intensity of a channel at a higher resolution

1Although correlation generally implies linear correlation, we use the word to also include potentially
nonlinear relationships.
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Figure 1. This figure shows the stability of model predictions as a function
of 1 day of training data (top panel) and three days of training data (bottom
panel). The box plot shows the variation due to model misspecification as a
function of normalized error for a model built with an ensemble of 50 bagged
neural networks. The diamonds indicate the predictions of a single linear
model. Notice that the seasonal variation is more pronounced for the less-
flexible linear model with one day of training data.

than available from the sensor itself. In the MODIS instrument, Channel 6 is only available
at 500 m, whereas the channels in the visible part of the spectrum are available at 250
m. In this section, we show how three models: Gaussian process regression, bagged neural
networks, and a linear model perform on this task.

Figure 2 shows the distributions of the input data at 500 m and 250 m resolutions. For
this problem, we cannot compute an error measure between the actual Channel 6 values
at 250 m and the predicted values, since the actual values do not exist at this resolution.
Thus, we instead compare the distances between the distributions of Channel 6 at 500 m
and the estimated distribution of Channel 6 at the 250 m resolution using the symmetric
Kullback-Leibler distance. For two distributions, p and q, this distance is defined as d =∑

i pi log(pi/qi) + qi log(qi/pi). The smaller this distance, the closer the distributions. For
these models, the KL distance is 0.0167, 0.0190, and 0.0260 for the GP, bagged neural
network, and the linear model respectively. The GP thus has the best predictive accuracy
according to this measure. Figure 3 shows the predictions of the models for multi-resolution
images.

4. Implications in the Earth Sciences

[RAMA FILL IN HERE]
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Figure 2. The first two rows in this figure show the distributions of the input
data at 500 m resolution and at 250 m resolution. The third panel on the left
shows the distribution of Channel 6 at 500 m resolution. The remaining three
panels show the estimated distributions for Channel 6 at 250 m resolution
using Gaussian process (GP) regression, bagged neural networks, and a linear
model respectively. The Kullback-Leibler distance between these distributions
and the true distribution shows that the GP regression performs the best.
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Figure 3. This figure shows the predictions of the three model classes used
for multi-resolution predictions. The top left panel shows the actual values of
Channel 6 at 500 m, while the remaining three panels show the predictions at
250 m for Gaussian process regression, bagged neural networks, and a linear
model.
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